Australian Government

Department of Defence
Defence Science and
Technology Organisation

An Implementation of Adaptive Side Lobe
Cancellation in MATLAB®

A. P. Shaw

Electronic Warfare and Radar Division

Defence Science and Technology Organisation

DSTO-TN-0955

ABSTRACT

This report describes an implementation in MATLAB® of an adaptive side
lobe canceller system, including a copy of the source code.

APPROVED FOR PUBLIC RELEASE

DSTO-TN-0955

Published by

DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

Telephone: — (08) 7389 5555
Facsimile: (08) 7389 6567

@© Commonuwealth of Australia 2010
AR No. 014-078
July, 2010

APPROVED FOR PUBLIC RELEASFE

DSTO-TN-0955

An Implementation of Adaptive Side Lobe Cancellation in
MATLAB®

Executive Summary

The objective of an adaptive side lobe cancellation system is to suppress high duty
cycle and noise-like interference signals received through the side lobes of the radar. This
is accomplished by using auxiliary antennas whose antenna pattern approximates to the
side lobe pattern of the main antenna. By suitably phasing the signals received by the
auxiliaries a directional anti-phase signal can be generated that when added to the main
antenna signal “subtracts” the interference.

This report describes an implementation in MATLAB® of an adaptive side lobe can-
celler system, including a copy of the source code.

iii

DSTO-TN-0955

iv

DSTO-TN-0955

Contents
1 Introduction 1
2 ASLC inputs 1
2.1 Onmnomenclature L L 1
2.2 Sampledata 1
2.3 Rangestrides 2
2.4 Training regiono e e e e 2
2.5 Training data L L Lo 2
2.6 Pre-computed weights 3
3 ASLC outputs 3
3.1 Outputdata 3
3.2 Weightsdata 3
4 Hidden parameters 3
5 Limitations 4
References 4
Appendices
A MATLAB implementation of ASLC 5

DSTO-TN-0955

vi

DSTO-TN-0955

1 Introduction

The objective of an adaptive side lobe cancellation (ASLC) system is to suppress high
duty cycle and noise-like interference signals received through the side lobes of the radar.
This is accomplished by using auxiliary antennas whose antenna pattern approximates to
the side lobe pattern of the main antenna. By suitably phasing the signals received by the
auxiliaries a directional anti-phase signal can be generated that when added to the main
antenna signal “subtracts” the interference.

A side lobe canceller effectively works by forming a beam from the auxiliary antennas
that points towards the interference source, the signal from this beam is then subtracted
from the signal detected by the main antenna. The problem is how do we determine the
direction in which to point the beam we form from the auxiliary antennas.

Mathematically the problem is to estimate the complex vector of N weights W =
(W, Wa, ... Wpy) to apply to the N signals V = (Vi, Va, ... Viy) from the auxiliary
antennas in order to minimise up to N directional interference signals in the side lobes of
the main antenna signal (V;;,). It may be shown [1] that for band limited noise, appropriate
weights may be estimated from:

W= M 'R (1)
where M = E{V*VT} (2)
and R=FE{V,,V*} (3)

where p is an arbitrary scalar F{ } the expected value, * the complex conjugate, T the
transpose and ~! the inverse.

2 ASLC inputs

2.1 On nomenclature

The code nomenclature assumes that the data has been Doppler processed and pulse
compressed, but that is not essential.

The association of particular matrix dimensions with “range” or “Doppler” is one of
convenience (“range” is the second dimension and “Doppler” the third dimension of the
signal and auxiliary data) and need not necessarily align with the user’s data. However, if
there is a change in the association, then it is the responsibility of the user to ensure that
the parameter values provided are appropriate to the interpretation of the data.

2.2 Sample data

The signal data against which ASLC is to be applied is the Signal, which consists of
an arbitrary number of “beams” or “channels” in the form of a three dimensional array
such that (nCs, nRs, nDs)=size(Signal) where nCs is the number of signal channels,
nRs is the number of range bins and nDs is the number of Doppler bins.

DSTO-TN-0955

The auxiliary data that is to provide the ASLC is Auxiliaries, which consists of an
arbitrary number of “beams” or “channels” in the form of a three dimensional array such
that (nCa, nRa, nDa)=size(Auxiliaries) where nCa is the number of signal channels,
nRa is the number of range bins and nDa is the number of Doppler bins. It is essential
that nRa == nRs and nDa == nDs.

2.3 Range strides

Simple ASLC is implemented with a single set of training data over the data set. This
is not desirable if the interference is not uniform over the data set. The baseline code
directly supports the segmentation of the data into “range strides”, with calculation of
the adaptive weight carried out for each stride. The number of strides used is determined
by the Nstride parameter. The application of the weights across the data is then by
interpolation, so that each range bin has a unique set of weights.

In some circumstances it is desirable to not include data from the range region at the
centre of the stride. The size of the excluded region is defined by the RangeGap parameter.

2.4 Training region

The extent of the training region is established by the ClutterExtentIn vector.

If length(ClutterExtentIn)==4 then the clutter region is assumed to extend over
two regions from Init_bin=ClutterExtentIn(1) to low_bin=ClutterExtentIn(2) and
from high_bin=ClutterExtentIn(3) to final_bin=ClutterExtentIn(4).

If length(ClutterExtentIn)==2 then it is assumed that Init_bin=1 and final_bin
=nDa. The values in ClutterExtentIn are sorted into an ascending list so that they cannot
overlap, although the regions may merge.

The sample region used is determined by the SampleRegion parameter.

When SampleRegion=="noise" then the training is obtained by a single region (from
low_bin to high_bin) in the data and the ASLC corrections are applied over the entire
data space.

When SampleRegion=="clutter" then the training is obtained from two sample re-
gions (from Init_bin to low_bin and from high_bin to final_bin) and the ASLC cor-
rections are applied only over the training region.

Any other value for SampleRegion results in a selection of training data on either side
of the middle Doppler bin until the required number of samples has been obtained. The
resulting ASLC corrections are applied over the entire data space.

2.5 Training data

To train the data, samples from the training region must be selected. The number of
samples in range (Nranges parameter) and Doppler (Ndopplers parameter) to be inde-
pendently defined.

DSTO-TN-0955

Radar data may include correlations in range and/or Doppler due to the waveform
design, oversampling, compression weights, Doppler padding etc. This can result in the
use of correlated data in the training which does not provide useful training data (at least
not in the baseline implementation). To overcome this the software supports the ability
to require that only every n'" data sample is used. The spacing for range space and for
Doppler space can differ. If the required number of samples will take the data outside
of the region of validity then the software makes appropriate adjustments to the data
collected. The spacing between samples is determined by the Nstep vector. If Nstep is
a single value then the value is used for both range and Doppler, if it is an array, then
the first value is used for the range dimension and the second value used for the Doppler
dimension.

There is no checking that the number of samples is sufficient for an accurate estimate
of the covariance matrix.

2.6 Pre-computed weights

In some circumstances it is desirable to use pre-computed weights from a prior data
set. This is supported by providing in the output from the function the weights that have
been estimated. These weights may then be placed as an input to the function in the
variable InWeights. If this function is not required, then this variable must be set to
InWeights=[]. The implementation assumes (apart from a few simple checks) that the
supplied weights are appropriate to the data set that they are being used on.

3 ASLC outputs

3.1 Output data

The outputs data set is the same format and size as the input signal data, but after
ASLC has been applied to the signal.

3.2 Weights data

Weights data that is calculated by the code is supplied as an additional output. This
enables examination of the weight magnitudes, but also the use of the weights generated
with a similar (same size) signal and auxiliary data (with the other input parameters the
same) in accordance with section 2.6.

4 Hidden parameters

The ASLC implementation includes a number of “hard coded” variables that may need
to be changed for a particular implementation.

DSTO-TN-0955

The parameter ARBITARY_SCALAR represents p the arbitrary scalar in equation 1 and
is currently set to unity.

In training the data there is a simple test (see source code lines 335-339 and 372-373)
for the presence of a large target in the training data (a crude cell average CFAR) so that
large targets can be excluded from the training data. The magnitude of target that is
considered “large” for exclusion is set by the value of LARGE_TARGET_THRESHOLD. In the
code herein it is set to 20.

If other processing has been applied to eliminate “zero” Doppler effects such as DPCA
which has been trained on the same data as will be used for ASLC, then it is (probably)
desirable to exclude that data from the ASLC training data. In the code herein, the region
that is excluded is determined by the parameter DPCA_MASKED and it ensures that Doppler
bins 1:DPCA_MASKED and bins nDa-DPCA_MASKED:nDa are excluded from training.

5 Limitations

There is no conditioning applied in the generation of the covariance matrix in this
implementation. Depending upon the data and usage of the code it is possible that
the estimate for the covariance matrix will be ill-conditioned for inversion. Generally
MATLAB® will throw a warning if this is the case.

The MATLAB® code doesn’t make use of the (obvious) inv(M)*R’ instead it uses the
MATLAB® recommendation of M\R’. To change to the explicit code the “commenting
out” needs to be changed in the source code at lines 390 and 391.

The code has been modified to MATLAB® 2009b. The majority of the code should
work with prior versions except where the dummy variable ~ has been used in some return
values. If the code is to be run on an older implementation of MATLAB® then ~ will
need to be changed to (any) convenient (non-clashing) variable name in lines 125 and 129.

References

1. Farina, A. (1990) Radar Handbook (editor: M Skolnik), 2nd edition edn, McGraw-Hill,
chapter 9: Electronic-counter-countermeasures, pp. 9.1-9.18.

© 0w N O U R W N e

A SNSRI NI N N S N SR RSN SIS N N N SN SRS RSN

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

DSTO-TN-0955

Appendix A MATLAB implementation of ASLC

The following is the code used to compute and apply the ASLC weights.

function [output, weights]=ASLC_ARCS1(Signal, Auxiliaries, Nranges,...
Ndopplers, Nstep, Nstride,
SampleRegion, RangeGap,
InWeights, ClutterExtentIn)

%function [output, weights]=ASLC_ARCSI(Signal, Auxiliaries, Nranges,...

% Ndopplers, Nstep, Nstride,
% SampleRegion , RangeGap,
% InWeights, ClutterExtent)
%
% Compute and apply the ASLC weights
%
%Parameters
% Signal: [Signal Range Doppler] array for the signal
antenna (s)
Auziliaries: [Aux Range Doppler] array for the auzxiliaries
Nranges: Number of range bins to be used in covariance estimate
Ndopplers: Number of doppler bins to be used im covariance
estimate
Nstep : Number of range & Doppler bins between samples used

in covariance estimate can be a wvector for different
step sizes [range Doppler] (not used if InWeights "=[])

Nstride : Number of estimates to be made in range space

SampleRegion: Defines the region within which training data is
collected relative to the ClutterEztentIn values
AND the region to which the processing is applied.

If SampleRegion==""noise '’ then the training data is
collected in the region low_bin:high_bin (see
ClutterExtentIn) and is applied to the ENTIRE Doppler
extent of the data. If SampleRegion==""Clutter '’ then
training data is collected in two regions
Init_bin:Low_bin and high_bin: final_bin (see
ClutterExtentIn) and the processing is only applied to
the same region. Other values for SampleRegion define
a default space in the middle of the Doppler coverage.

RangeGap : extent of the range gap in around the stride central
range that is to be used in estimating the weights
(not used if InWeights "=][])

InWeights : Precomputed weights, if weights are to be estimated
from the data then this MUST be a null (=][]) array,
if it is NOT null, then the wvalue will be used
(subject to some sanity checks) overwrite Nstride
and as the ASLC weights. The form of InWeights is
assumed to match the form of the output parameter
weights .

ClutterExtentIn A Either a four value array [Init_bin low_bin
high_bin final_bin] that defines the clutter region
to be [Init_bin:low_bin] and [high_bin:final_bin],
or a two wvalue array [low_bin high_bin] that
assumes Init_bin=1 and final_bin=nD where nD is the

DSTO-TN-0955

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

N NN RN PR PR APERAPQRAPQRAR QKR AQERRKRAQRNQKRK KK KK

mazximum Doppler bin. Note the final list is always
sorted into assending order.

output: [Signal Range Doppler] array after ASLC processing
weights : [stride Aux] array of the weights.
Notes:

1. Code syntaxr assumes post—Doppler processing.
2. There is no conditioning of the covariance matrix prior to
inversion in this code! MATLAB may throw warning messages!

Original by APShaw, 24 July 2009
Modified for clutter processing (RANGEGAP) by APShaw, 10 Aug 2009
Modified for pre—computed weights in clutter by APShaw, 27 Aug 2009
Modified to exclude wvery edge Doppler's from ‘‘edge'' option

by APShaw, 01 Sep 2009
Modified to speed up processing by eliminating squeeze functions in
the weight computations wusing a mixture of a squeeze and a reshape.

by APShaw, 08 Sep 2009
Modified to add " ‘clutter'' specific option by APShaw, 08 Sep 2009
Clean up and improve comments to form wversion for ARCS study
distribution and set the coding conform to MATLAB 2009b. FEliminate
un—used SampleRegion options. Replace fized offsets with
parameterised values (DPCAMASKED and LARGE.TARGET.-THRESHOLD).
Changed "' ClutterEztent '' wvariable to enable the clutter extent
region to be tricked into other regioms or to limited regions of
the clutter. Reformated to suit incorporation into tech note.

by APShaw, 15 Jun 2010

(¢c) Copyright, Commonwealth of Australia, 2009, 2010

%%

% Fized parameters and early initialisations

oz

% arbitrary scalar applied to noise cancellation

ARBITARY SCALAR=1;

%
%
%

Set the threshold to be wused in determining if there is a target
present in the training data that needs to be excised. Value is
the SNR (linear)

LARGE. TARGET THRESHOLD=20;

%
%

Set the number of bins to be eliminated from the Doppler region due
to the effects of DPCA

DPCA MASKED=3;

%
%

Gap in range data to be used at center of each stride, to prevent
training on “self data”.

RANGE.GAP=RangeGap ;

104
105
106
107

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

DSTO-TN-0955

% Identify the number of signal and the range/Doppler map size
[nS nRs nDs]=size (Signal);

% Identify the number of auziliaries
[nA nRa nDa]=size (Auxiliaries);

% Initialise the output array
output=zeros(size (Signal))+1j*zeros(size(Signal));

%%
% Validate the input data
o7

U

% determine if we are wusing pre—computed weights and validate the data
% provided .
if “isempty (InWeights)
% check that the number of weight channels equals the number of aux
% channels
if ndims(InWeights)==3
[nWs , 7, nWc]=size (InWeights);
assert (and (nWs = nS, nWe = nA) ,...
"Number.of_weight _.channels .must_.match_SIG_and _AAUX_channels');
else
[T, nWc|=size (InWeights);
assert (nWe=mnA , . ..
'"Number.of._weight .channels MUST_match_number.of _AUX_channels ')
nWs =1;
if nS>1
% if there are more signal channels than weights assume
% applies only to the first channel.
Signal (2:end,: ,:)=]];
end
end
Nstride=nWs;
COMPUTEWEIGHTS=false ;
else
COMPUTEWEIGHTS=true ;
end

% Check number of signal/auziliary Doppler s and ranges match
assert (and(nRa =— nRs, nDa = nDs),
'Range.and .Doppler_bin.size_of_.signal_and_.auxiliaries MUST_match');

% Check the ClutterExztent values
if “isempty (ClutterExtentIn)
if length (ClutterExtentIn)==
ClutterExtent=[1 ClutterExtentIn (1) ClutterExtendIn(2) nDs];
elseif length (ClutterExtentIn)>=4
ClutterExtent=ClutterExtentIn;
else

DSTO-TN-0955

156 disp (' Clutter_extent_badly_defined .—_using._default.region');
157 SampleRegion="default ';

158 ClutterExtent=[1 nDs nDs nDs];

159 end

160 ClutterExtent=sort (ClutterExtent);

161 else

162 disp ('Clutter _extent.is.not.defined .—_.using._default._region');

163 SampleRegion="'default ';

164 ClutterExtent=[1 nDs nDs nDs]|;

165 end

167 % Set the wvalues for the step sizes in range and Doppler depending
168 % upon the wvalue(s) passed by Nstep.
169 if length (Nstep)==1

170 DNranges=max(Nstep ,1);

171 DNdopplers=max(Nstep ,1);

172 else

173 DNranges=max(Nstep (1) ,1);
174 DNdopplers=max(Nstep (2) ,1);
175 end

176 DNranges_half=floor (Nranges.x DNranges./2);

177 DNdopplers_half=floor (Ndopplers.* DNdopplers./2);

178

179

180 % Check the number of ranges/dopplers is within the size of the arrays
151 assert (((Nranges.xDNranges))<= nRa,...

182 'Value_of <Nranges«Nstep>_larger _than_number.range._bins.in.data');
183 assert (Ndopplers.* DNdopplers<= nDa,. ..

184 '"Value_of <Ndopplers«Nstep>_larger _.than_doppler_bins_in._data');

185

186 %%

187 % Determine regions to be used for estimations

188 %

189

190 % compute the center range bin index for each stride
191 start=DNranges_half+1;

192 stop=max(nRa—DNranges_half , start);

193 check =[];

194 if Nstride>1

195 strides=floor (start+(stop—start)*(0: Nstride —1)/(Nstride —1));
196 % remove any strides with the same value (to prevent redundant
197 % calculations and interpolation failing)

198 check_count =0;

199 for count=2:Nstride

200 if strides (count)==strides (count—1)

201 check_count=check_count+1;

202 check (check_count)=count; %#ok<AGROW>

203 end

204 end

205 if check_count

206 strides (check)=][];

207 end

208 else

DSTO-TN-0955

209 strides=floor (nRa./2);

210 end

211 Nstride=length (strides);

212

213 % compute the centres of the Doppler samples and generate a list of the
214 % Doppler bins to be used for weight estimation.

215 Doppler_step=max(1,DNdopplers);

216 SampleRegion=lower (SampleRegion);

217 switch SampleRegion

218 case 'clutter'

219 % Make a list equal to the entire Doppler space

220 Doppler_listO=1:Doppler_step :nDs;

221 % Eliminate those bins that are NOT in the clutter region
222 Doppler_list0 (...

223 and(Doppler_list0 > ClutterExtent (2),

224 Doppler_list0 < ClutterExtent (3)))=][];

225 Doppler_list0 (Doppler_list0 < ClutterExtent (1))=[];

226 Doppler_list0 (Doppler_list0 > ClutterExtent (4))=[];

227 % Use the eliminated region as the Doppler list for training
228 Doppler_list=Doppler_list0;

229 % remove the DPCA_masked region from the training list
230 Doppler_list (Doppler_list <=DPCAMASKED) =[];

231 Doppler_list (Doppler_list >=nDs—DPCA MASKED) =[] ;

232 case 'moise'

233 % Make a list equal to the entire Doppler space

234 Doppler_listO=1:Doppler_step :nDs;

235 % Eliminate those bins that are in the clutter region

236 Doppler_list0 (Doppler_list0<= ClutterExtent (2))=[];

237 Doppler_list0 (Doppler_list0>= ClutterExtent (3))=[];

238

239 % Use the eliminated region as the Doppler list for training
240 Doppler_list=Doppler_list0;

241 otherwise %'default '

242 DO=floor (nDs./2);

243 Doppler_list =...

244 max (1 ,D0-DNdopplers_half):

245 Doppler_step :min (D+DNdopplers_half ;nDa);

246 end

227 NumberDopplers=length (Doppler_list);
248

220 % Failsafe provision — ensure we have at least one Doppler in the list
250 if NumberDopplers<1

251 Doppler_list=floor (nDa./2);

252 NumberDopplers=1;

253 end

254

255

256 %

257 % FEstimate the weight sets for each stride

258 %

259
260 1f COMPUTEWEIGHTS

261 % initialise the weights and the intermediate matrices

DSTO-TN-0955

262 weights=zeros (Nstride ,nA,nS)+1j.xzeros (Nstride ,nA,nS);

263 M_init=zeros (nA)+1j.xzeros (nA);

264 R_init=zeros (nS,nA)+1j.xzeros (nS,nA);

265 total_power=ones(nS,1);

266

267 % loop owver the number of range strides to take over the data set
268 for stride_counter=1:Nstride

269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

291
292
293
294

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

10

% Determine the extent of region where range data is to be
% taken , making accomodation for the gap in the range data
% and retaining the specified number of range bins in the
% data set.

Rangel=strides (stride_counter)—DNranges_half -RANGE.GAP;
Range2=strides (stride_counter)+DNranges_half+RANGE.GAP;

% If the range extents go beyond the limits of wvalid data,
% adjust them to be within the range limits
if Range2>nRa
Excess=Range2-—nRa;
Rangel=Rangel—Excess;
Range2=nRa;
end
if Rangel<l
Excess=1-Rangel;
Range2=Range2+Excess;
Rangel=1;
end
% Double check the effects of the offsets incase a large
% number of range bins are in use.
Rangel=max(1,Rangel);
Range2=min (Range2 ,nRa);

% Determine the extent of the region where there is a gap
% in the range data.

Skipl=strides (stride_counter)—RANGE.GAP;

Skip2=strides (stride_counter)+RANGE.GAP;

% Check the guard region doesn't go beyond the limits of walid
% data and if they do adjust them accordingly
if Skip2>nRa
Excess=Skip2-nRa;
Skipl=Skipl—Excess;
Skip2=nRa;
end
if Skipl<il
Excess=1-Skipl;
Skip2=Skip2+Excess;
Skipl=1;
end
% Double check in case a large value of RANGE.GAP is in use.
Skipl=max(1,Skipl);
Skip2=min (Skip2 ,nRa);

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

DSTO-TN-0955

% Make a list of the range bins to be used for this stride and
% then remove those that are in the skip region
ValidRanges=Rangel : DNranges: Range2;

ValidRanges (and (ValidRanges>=Skip1 , ValidRanges<=Skip2))=1];

% Fail—safe provision: ensure that we have at least one range
% bin left in the stride.
if length(ValidRanges)<1
ValidRanges=strides (stride_counter);
end

% generate a vector of total signal powers in this stride
% accomodating the gap.
for counter=1:nS
total_power (counter ,:)=squeeze (...
sum (sum(Signal (nS, ValidRanges , Doppler_list)
.xconj(Signal (nS, ValidRanges, Doppler_list)))));
end
cells=squeeze ((length (ValidRanges).xlength (Doppler_list)) —1);

% initialise weight computation
M=M _init ;
R=R_init;

% compute the covariance matriz for this range stride
for range_counter=1:length (ValidRanges)
range_bin=ValidRanges(range_counter);

% Speed up functionality: extract data for this range bin
T_Signal=squeeze (Signal (:,range_bin ,:));
if nS==1
T_Signal=T_Signal.';
end
T _Auxiliaries=squeeze (Auxiliaries (: ,range_bin ,:));

% speed up functionality: reshape to avoid "squeeze” inside
% the inner loop.
t_signal=reshape(T_Signal ,size (T_Signal, 1)

xsize (T_Signal ,2),1);
t-Auxiliaries=reshape(T_-Auxiliaries ,...

size (T_Auxiliaries ,1)xsize (T_Auxiliaries ,2),1);

for doppler_counter=1:NumberDopplers
doppler_bin=Doppler_list (doppler_counter);
Svector=t_signal ((doppler_bin —1)*nS+1:
(doppler_bin —1)*nS+nS);
Spower=Svector.*xconj(Svector);

% If there isn't a large target present in the test

% cell then add this cell

if “(max((Spower./((total_power—Spower)./cells)...
>LARGE TARGET-THRESHOLD)))

11

DSTO-TN-0955

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

407
408
409
410
411
412
413
414
415
416
417
418
419
420

12

Avector=t_Auxiliaries ((doppler_bin —1)*nA+1:
(doppler_bin —1)*nA+4nA);
MM 4+ (Avector)x Avector ';
R=R + (Svector)*conj(Avector)."';
% counter=counter+1;
end
end
end
%Normalisations turned off to save computational cycles
INVEM. / counter ;
%R=R./counter;
% Compute the weights: mnote MATLAB recommendation to not
% use inv function.
% weights (stride_counter ,:,:)=1inv(M)xR';
weights (stride_counter ,:,:)=M\R';
end
% need to take complexr conjugate of the weights — this is because
% we have allowed MATLAB to do the conjugate transpose instead of
% the transpose as this is marginally faster on the test machine.
weights=conj(weights);
else
% If we are not computing the weights from the data, then wuse the
% weights that have been supplied in the input parameters.
weights=InWeights;
end
%%
% Apply the weighted auziliaries to the signal
o7

% Range wvalues, using ”"start” and 7stop” (calculated previously) values
% to avoid extrapolation

ranges=min (max(1:nRs, start),stop);

% the Doppler expansion of the range weights to simplify the weight

% application

expander=ones (nDs,1);

% initialise the correction matriz

correctionO0=zeros (nRs,nDs)+1j*zeros (nRs,nDs);

% initialise the output matriz

Y%output=zeros (nS,nRs,nDs)+1j*zeros (nS,nRs,nDs);

% Apply the weights to each signal in turn
for counter0=1:nS

%extract the weights for the current signal
Sweights=squeeze (weights (:,:, counter0));

% initialise the correction for this signal channel
correction=correctionO;

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

460
461
462
463

end

DSTO-TN-0955

%compute the weight to be applied at each range bin (output weights
%array has dimensions nA x nRs
if Nstride==1

% one weight applies to every range bin

Wout=((squeeze (Sweights (1,:)))."')*ones(1,nRs);

% compute the correction factor

for

end
else

counter=1:nA

correction=correction+
squeeze (Auxiliaries (counter ,: ,:)).x
((expander«Wout (counter ,:)). ");

% Different weights for each range bin

for

end
end

% apply

counter=1:nA

% interpolate the computed strides to each range bin for
% each array for this signal channel

Win=squeeze (Sweights (: , counter));

Wout (counter ,:)=interpl (strides ,Win, ranges, 'spline');

% compute the correction factor
correction=correction+
squeeze (Auxiliaries (counter ,: ,:)).x
((expander*Wout(counter ,:)). "');

the correction to the sigal, including the arbitrary scalar

% adjustment of the weighted correction.
switch SampleRegion

case

"clutter'
% Initially make the output equal to the input
output (counter0 ,:,:)=squeeze (Signal (counter0 ,: ,:));

% Apply the correction only over the entire clutter region
% Note — this does include the DPCAMASKED region .
output (counter0O ,: , Doppler_list0)=...
squeeze (Signal (counter0 ,: , Doppler_list0)) —...
correction (:,Doppler_list0)+«ARBITARY SCALAR;

otherwise

end

output (counter0 ,:,:)=squeeze (Signal (counter0 ,:,:)) —...

correction .* ARBITARY SCALAR;

13

DSTO-TN-0955

14

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 1. CAVEAT/PRIVACY MARKING
DOCUMENT CONTROL DATA

2. TITLE 3. SECURITY CLASSIFICATION
An Implementation of Adaptive Side Lobe Can- | Document (U)
cellation in MATLAB® Title (V)
Abstract (U)
4. AUTHORS 5. CORPORATE AUTHOR
A. P. Shaw Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia
6a. DSTO NUMBER 6b. AR NUMBER 6c. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-TN-0955 014-078 Technical Note July, 2010
8. FILE NUMBER 9. TASK NUMBER 10. SPONSOR 11. No OF PAGES 12. No OF REFS
2010/1076861/1 07/044 PM C & W 14 1
13. URL OF ELECTRONIC VERSION 14. RELEASE AUTHORITY
http://www.dsto.defence.gov.au/corporate/ Chief, Electronic Warfare and Radar Division
reports/DSTO-TN-0955.pdf

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved For Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,
EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

No Limitations

18. DSTO RESEARCH LIBRARY THESAURUS

Radar, Radar interference, Radar jamming,
Signal Processing, Adaptive signal processing,
Side lobes,

Software, Computer programs

19. ABSTRACT

This report describes an implementation in MATLAB® of an adaptive side lobe canceller system,
including a copy of the source code.

Page classification: UNCLASSIFIED

	Abstract

	Executive Summary
	Contents
	1 Introduction
	2 ASLC inputs
	2.1 On nomenclature
	2.2 Sample data
	2.3 Range strides
	2.4 Training region
	2.5 Training data
	2.6 Pre-computed weights

	3 ASLC outputs
	3.1 Output data
	3.2 Weights data

	4 Hidden parameters
	5 Limitations
	References
	Appendix A: MATLAB implementation of ASLC

	Distribution List

	Document Control Data

